Home
Class 12
MATHS
((1+itantheta)/(1-itantheta))^n-(1+itann...

`((1+itantheta)/(1-itantheta))^n-(1+itanntheta)/(1-itanntheta)`=

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x)/(1 -x)=cos2theta +isin2theta , prove that that x=itantheta .

If x=costheta+isintheta Prove that (x^(2n)-1)/(x^(2n)+1)=itantheta

Match the following. {:(Column-I," "Column-II),(I" : "x=costheta+isintheta" then "x^n-(1)/(x^n),"a) "2isin(alpha-beta)),(II" : If " z=costheta+sintheta" then "(z^n-1)/(z^(2n)+1),"b) "2cos(alpha-beta)),(III" : "x=cisalpha","y=cisbeta" then "x/y+y/x=,"c) "itanntheta),(IV " : " x=cisalpha","y=cisbeta" then "x/y-y/x=,"d) "2iSinntheta):}

If A=[(1,1), (1,1)] and det (A^n-1)=1-lambda^n, n in NN, then the value of lambda_n is

If a_(1)=1,a_(n+1)=(1)/(n+1)a_(n),a ge1 , then prove by induction that a_(n+1)=(1)/((n+1)!)n in N .

If a_(1)=1,a_(n+1)=(1)/(n+1)a_(n),a ge1 , then prove by induction that a_(n+1)=(1)/((n+1)!)n in N .

If a_(1)=1,a_(n+1)=(1)/(n+1)a_(n),a ge1 , then prove by induction that a_(n+1)=(1)/((n+1)!)n in N .

If a_(1)=1,a_(n+1)=(1)/(n+1)a_(n),a ge1 , then prove by induction that a_(n+1)=(1)/((n+1)!)n in N .

If a_(1)=1,a_(n+1)=(1)/(n+1)a_(n),a ge1 , then prove by induction that a_(n+1)=(1)/((n+1)!)n in N .

If A = [[1 ,1],[1,1]] and det (A^(n) - 1) = 1 -lambda ^(n), n in N, then the value of lambda is