Home
Class 11
MATHS
If a, b, c and d are in G.P. show that ...

If a, b, c and d are in G.P. show that `(a^2+b^2+c^2)(b^2+c^2+d^2)=(a b+b c+c d)^2` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c,d be in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2)=(ab+bc+cd)^2

If a,b,c and d are in G.P.show that (a^(2)+b^(2)+c^(2))(b^(2)+c^(2)+d^(2))=(ab+bc+cd)^(2)

If a,b,c are in G.P., then show that : a(b^2+c^2)=c(a^2+b^2)

If a,b,c are in G.P., then show that : (a^2-b^2)(b^2+c^2)=(b^2-c^2)(a^2+b^2)

If a,b,c are in G.P., then show that a(b-c)^2=c(a-b)^2

If a,b,c,d be in G.P. show that (b-c)^2+(c-a)^2+(d-b)^2=(a-d)^2.

If a, b, c , d are in G.P. , then shown that (i) (a + b)^(2) , (b +c)^(2), (c + d)^(2) are in G.P. (ii) (1)/(a^(2) + b^(2)), (1)/(b^(2) +c^(2)), (1)/(c^(2) + a^(2)) are in G.P.

If a,b,c, and d are in G.P., show that (ab+bc+cd)^(2)=(a^(2)+b^(2)+c^(2))(b^(2)+c^(2)+d^(2)) .

If a, b, c, d are in G.P., then prove that: (b-c)^(2)+(c-a)^(2)+(d-b)^(2)=(a-d)^(2)