Home
Class 12
MATHS
If C0,C1,C2,....,Cn are coefficients in ...

If `C_0,C_1,C_2,....,C_n` are coefficients in the binomial expansion of `(1+x)^n` and n is even, then `C_0^2-C_1^2+C_2^2-C_3^2 + ... +(-1) C_n^2`, is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If C_0, C_1, C_2,………C_n are binomial coefficients int eh expansion of (1+x)^n then and n is even, then C_0^2-C_1^2+C_2^2-C_3^2 + ... +(-1) C_n^2 , is equal to

If C_(0) , C_(1) , C_(2) ,…, C_(n) are coefficients in the binomial expansion of (1 + x)^(n) and n is even , then C_(0)^(2)-C_(1)^(2)+C_(2)^(2)+C_(3)^(2)+...+ (-1)^(n)C_(n)""^(2) is equal to .

If C_(0) , C_(1) , C_(2) ,…, C_(n) are coefficients in the binomial expansion of (1 + x)^(n) and n is even , then C_(0)^(2)-C_(1)^(2)+C_(2)^(2)+C_(3)^(2)+...+ (-1)^(n)C_(n)""^(2) is equal to .

If C_0,C_1,C_2..C_n denote the coefficients in the binomial expansion of (1 +x)^n , then C_0 + 2.C_1 +3.C_2+. (n+1) C_n

If C_0,C_1,C_2...C_n denote the coefficients in the binomial expansion of (1+x)^n, prove that C_0+3C_1+5C_2+...+(2n+1)C_n=(n+1)2^n

If C_(0),C_(1),C_(2)..C_(n) denote the coefficients in the binomial expansion of (1+x)^(n), then C_(0)+2.C_(1)+3.C_(2)+.(n+1)C_(n)

If C_0,C_1,C_2,........, C_n denote the coefficients in the expansion of (1+ x)^n , then the value of : C_1+2C_2+3 C_3+..... +nC_n is :

If C_o, C_1, C_2 ....,C_n C denote the binomial coefficients in the expansion of (1 + x)^n, then 1^3. C_1 + 2^3 . C_2 + 3^3 .C_3 + ... + n^3 .C_n, =

If C_(0),C_(1), C_(2),...,C_(n) denote the cefficients in the expansion of (1 + x)^(n) , then C_(0) + 3 .C_(1) + 5 . C_(2)+ ...+ (2n + 1) C_(n) = .