Home
Class 11
MATHS
If (a+b x)/(a-b x)=(b+c x)/(b-c x)=(c+dx...

If `(a+b x)/(a-b x)=(b+c x)/(b-c x)=(c+dx)/(c-dx)(x!=0),` then show that a, b, c and d are in G.P.

Promotional Banner

Similar Questions

Explore conceptually related problems

If (a+bx)/(a-bx)=(b+cx)/(b-cx)=(c+dx)/(c-dx)(x!=0) then show that a,b,c and d are in G.P.

(a+bx)/(a-bx)=(b+cx)/(b-cx)=(c+dx)/(c-dx)(x!=0) then show that a,b,c and d are in G.P.

If the roots of (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 are equal then show that a=b=c

If y=(x+a)(x+b)(x+c)(x+d)/(x-a)(x-b)(x-c)(x-d) then the value of dy/dx:

Prove that =|a cc-a a+cc bb-c b+c a-bb-c0a-c x y z1+x+y|=0 implies that a ,b ,c are in A.P. or a ,c ,b are in G.P.

If ((x-a)(x-b))/((x-c)(x-d)^(2))>=0; where a>b>c>=d>0, then x in

If a,b,c,x are all real numbers,and (a^(2)+b^(2))x^(2)-2b(a+c)x+(b^(2)+c^(2))=0 prove that a,b,c are in G.P.,and x is their common ratio.

If (x)/(b+c-a)=(y)/(c+a-b)=(z)/(a+b-c) show that (b-c)x+(c-a)y+(a-b)z=0