Home
Class 12
MATHS
If alpha,beta,gamma are the roots of x^3...

If `alpha,beta,gamma` are the roots of `x^3+x^2+x+1=0` then `alpha^3+beta^3+gamma^3=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are the roots of x^(3) - 3x + 7 = 0 then alpha beta gamma =

If alpha, beta, gamma are the roots of x^(3) - 3x + 7 = 0 then alpha + beta + gamma =

If alpha,beta,gamma are the roots of x^(3)+3x+3=0 then alpha^(5)+beta^(5)+gamma^(5)=

If alpha , beta , gamma are the roots of x^3 +2x^2 -3x -1=0 then alpha^(-2) + beta^(-2) + gamma^(-2)=

If alpha, beta, gamma are the roots of x^(3) + x^(2) + x + 1 = 0 then (alpha - beta)^(2) + (beta - gamma)^(2) + (gamma - alpha)^(2) =

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =

If alpha,beta,gamma are the roots of x^(3)+2x^(2)+3x+8=0 then (alpha+beta)(beta+gamma)(gamma+alpha)=

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =

If alpha,beta, gamma are the roots of 4x^(3) - 6x^(2) + 7x + 3 = 0 then alpha beta + alpha beta + alpha gamma =