Home
Class 12
MATHS
If alpha + beta + gamma = 6, alpha^2 + b...

If `alpha + beta + gamma = 6, alpha^2 + beta^2 + gamma^2 = 14` and `alpha^3 +beta^3+gamma^3 = 36`, then `alpha^4 +beta^4 +gamma^4 =`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are such that alpha+beta+gamma =4, alpha^2+beta^2+gamma^2 =6, alpha^3+beta^3+gamma^3 =8, then the value of [alpha^4+beta^4+gamma^4] must be equal to (where[.] denotes the greatest integer function)

If alpha,beta,gamma are such that alpha+beta+gamma=2alpha^(2)+beta^(2)+gamma^(2)=6,alpha^(3)+beta^(3)+gamma^(3)=8, then alpha^(4)+beta^(4)+gamma^(4)

If alpha,beta,gamma are such that alpha+beta+gamma=2,""alpha^2+beta^2+gamma^2=6,""alpha^3+beta^3+gamma^3=8,t h e n""alpha^4+beta^4+gamma^4 is a. 18 b. 10 c. 15 d. 36

If alpha,beta,gamma are such that alpha+beta+gamma=2,""alpha^2+beta^2+gamma^2=6,""alpha^3+beta^3+gamma^3=8,t h e n""alpha^4+beta^4+gamma^4 is a. 18 b. 10 c. 15 d. 36

If alpha,beta,gamma are such that alpha+beta+gamma=2,""alpha^2+beta^2+gamma^2=6,""alpha^3+beta^3+gamma^3=8,t h e n""alpha^4+beta^4+gamma^4 is a. 18 b. 10 c. 15 d. 36

Show that | (1,1,1), (alpha ^ 2, beta ^ 2, gamma ^ 2), (alpha ^ 3, beta ^ 3, gamma ^ 3) | = (alpha-beta) (beta-gamma) (gamma-alpha) (alphabeta + betagamma + gammaalpha) |