Home
Class 12
MATHS
For 0 < theta < 2pi , sin^(-1)(sintheta)...

For `0 < theta < 2pi` , `sin^(-1)(sintheta)>cos^(-1)(sintheta)` is true when `theta` belongs to (a)`(pi/4,pi)` (b) `(pi,(3pi)/2)` (c)`(pi/4,(3pi)/4)` (d) `((3pi)/4,2pi)`

Promotional Banner

Similar Questions

Explore conceptually related problems

For 0 cos^(-1)(sin theta) is true when theta belongs to (a) ((pi)/(4),pi)(b)(pi,(3 pi)/(2))(c)((pi)/(4),(3 pi)/(4)) (d) ((3 pi)/(4),2 pi)

Given both thetaa n dphi are acute angles and sintheta=1/2,cosvarphi=1/3, then the value of theta+varphi belongs to (a) (pi/3,pi/2] (b) (pi/2,(2pi)/3] (c) ((2pi)/3,(5pi)/6] (d) ((5pi)/6,pi]

Given both thetaa n dphi are acute angles and sintheta=1/2,cosvarphi=1/3, then the value of theta+varphi belongs to (a) (pi/3,pi/2] (b) (pi/2,(2pi)/3] (c) ((2pi)/3,(5pi)/6] (d) ((5pi)/6,pi]

Given both theta and phi are acute angles and sin theta=(1)/(2),cos varphi=(1)/(3), then the value of theta+varphi belongs to (a)((pi)/(3),(pi)/(2)]( b) ((pi)/(2),(2 pi)/(3)] (c) ((2 pi)/(3),(5 pi)/(6)] (d) ((5 pi)/(6),pi]

Range of tan^(-1)((2x)/(1+x^2)) is (a) [-pi/4,pi/4] (b) (-pi/2,pi/2) (c) (-pi/2,pi/4) (d) [pi/4,pi/2]

Range of tan^(-1)((2x)/(1+x^2)) is (a) [-pi/4,pi/4] (b) (-pi/2,pi/2) (c) (-pi/2,pi/4) (d) [pi/4,pi/2]

Range of tan^(-1)((2x)/(1+x^2)) is (a) [-pi/4,pi/4] (b) (-pi/2,pi/2) (c) (-pi/2,pi/4) (d) [pi/4,pi/2]

A solution of the equation cos^2theta+sintheta+1=0 lies in the interval a. (-pi//4,pi//4) b. (pi//4,3pi//4) c. (3pi//4,5pi//4) d. (5pi//4,7pi//4)

If 4cos^(2)theta=3 then theta =---- 1) (pi)/(6),(5 pi)/(6) 2) (pi)/(4),(3 pi)/(4) 3) (pi)/(3),(2 pi)/(3) 4) +-(pi)/(2)

if sin ((pi)/(4) cot theta ) = cos ((pi)/(4) tan theta ), then theta is equal to : a) 2 n pi + (pi)/(4) b) 2n pi pm (pi)/(4) c) 2 n pi - (pi)/(4) d) n pi + (pi)/(4)