Home
Class 11
MATHS
For all ngeq1, prove that 1/(1. 2)+1/(2....

For all `ngeq1`, prove that `1/(1. 2)+1/(2. 3)+1/(3. 4)+dotdotdot+1/(n(n+1))=n/(n+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

For all n ge 1 prove that (1)/(1.2)+ (1)/(2.3)+(1)/(3.4)+.....+(1)/(n(n+1))=(n)/(n+1)

For all n ge 1 prove that (1)/(1.2)+ (1)/(2.3)+(1)/(3.4)+.....+(1)/(n(n+1))=(n)/(n+1)

For all ngt=1 , prove that , (1)/(1.2) + (1)/(2.3) + (1)/(3.4) + ……+ (1)/(n(n+1)) = (n)/(n+1)

For all quad prove that (1)/(1.2)+(1)/(2.3)+(1)/(3.4)+...+(1)/(n(n+1))=(n)/(n+1)

Using the principle of mathematical induction prove that 1/(1. 2. 3)+1/(2. 3. 4)+1/(3. 4. 5)++1/(n(n+1)(n+2))=(n(n+3))/(4(n+1)(n+2) for all n in N

Using the principle of mathematical induction prove that 1/(1. 2. 3)+1/(2. 3. 4)+1/(3. 4. 5)++1/(n(n+1)(n+2))=(n(n+3))/(4(n+1)(n+2) for all n in N

For all n geq1 , prove that 1^2+2^2+3^2+4^2+dotdotdot+n^2= (n(n+1)(2n+1))/6

For all nge1 , prove that 1/1.2+1/2.3+1/3.4+..........+1/(n(n+1))=n/(n+1)

Using the principle of mathematical induction prove that (1)/(1.2.3)+(1)/(2.3.4)+(1)/(3.4.5)+...+(1)/(n(n+1)(n+2))=(n(n+3))/(4(n+1)(n+2) for all n in N

Prove the following by using the principle of mathematical induction for all n in N (1)/(1.2.3) + (1)/(2.3.4) + (1)/(3.4.5) + ……+ (1)/(n(n+1)(n+2)) = (n(n+3))/(4(n+1)(n+2))