Home
Class 10
MATHS
" (iv) "px^(2)+(2q-p^(2))x-2pq=0,p!=0...

" (iv) "px^(2)+(2q-p^(2))x-2pq=0,p!=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of the equation px^(2)-qx+r=0, then the equation whose roots are alpha^(2)+(r)/(p) and beta^(2)+(r)/(p) is (i) p^(3)x^(2)+pq^(2)x+r=0 (ii) px^(2)-qx+r=0 (iii) p^(3)x^(2)-pq^(2)x+q^(2)r=0 (iv) px^(2)+qx-r=0

Let x^(2)-px+q=0, where p in R,q in R have the roots alpha,beta such that alpha+2 beta=0 then -(i)2p^(2)+q=0 (ii) 2q^(2)+p=0( iii) q<0 (iv) none of these

If x^(2)+px+q=0andx^(2)+qx+p=0,(p!=q) have a common roots,show that their other 1+p+q=0 .Also,show that their other roots are the roots of the equation x^(2)+x+pq=0.

If x ^(2) -3x+2 is a factor of x ^(4) -px ^(2) +q=0, then p+q=

If x ^(2) -3x+2 is a factor of x ^(4) -px ^(2) +q=0, then p+q=

If 25p^(2)+9q^(2)-r^(2)-30pq=0 a point on the line px+qy+r=0 is

If p, q, r are rational then show that x^(2)-2px+p^(2)-q^(2)+2qr-r^(2)=0

Solve the following equation for x: 9x^(2)-9(p+q)x+(2p^(2)+5pq+2q^(2))=0