Home
Class 10
MATHS
(3x^(2)-7x+8)/(x^(2)+1)<=2...

(3x^(2)-7x+8)/(x^(2)+1)<=2

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of Integers in the domain of function f(x)=cos^(-1)[ (3x^(2)-7x+8)/(1+x^(2))] (where [.] is GIF) is equal to

((6x^(4)+8x^(3)+27x^(2)+7)/(3x^(2)+4x+1))

Find the sum of the like terms . 3x^(2),-7x^(2),8x^(2)

Add: 5x^(2) - 7x + 3, -8x^(2) + 2x -5 and 7x^(2) - x - 2

If (x+1)(x+3) is the HCF of (x^(2)+3x+2)(x^(2)+2x+a) and (x^(2)+7x+12)(x^(2)+7x+b) ,then the value of 6a+3b=

int(4x^(5)-7x^(4)+8x^(3)-2x^(2)+4x-7)/(x^(2)(x^(2)+1)^(2))dx

Simplify the following : 5x^(4) - 7x^(2) +8x - 1 +3x^(2) - 9x^(2) + 7 - 3x^(4)+11x - 2 +8x^(2)

If x^(2)+(1)/(x^(2))=7 and x!=0: find the value of 7x^(3)+8x-(7)/(x^(3))-(8)/(x)

Multiply 2x^(3) - 7x + 8 by 3x^(2) + 2x .