Home
Class 11
MATHS
(theta)/(0)*int(0)^([x])(2^(t))/(2^([t])...

(theta)/(0)*int_(0)^([x])(2^(t))/(2^([t]))dt,x>0

Promotional Banner

Similar Questions

Explore conceptually related problems

If _(0)^(x)sin(f(t))dt=(x+2)int_(0)^(x)t sin(f(t))dt, wherex >0 then show that f'(x)cot f(x)+(3)/(1+x)=0

Let f(x)=int_(0)^(x)cos((t^(2)+2t+1)/(5))dt0>x>2 then f(x)

Let f(x)=int_(0)^(x)"cos" ((t^(2)+2t+1)/(5))dt,0>x>2, then

The interval in which the function f(x)=int_(0)^(x) ((t)/(t+2)-1/t)dt will be non- increasing is

(d)/(dx) [int_(0)^(x^(2))(dt)/(t^(2) + 4)] = ?

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

lim_(x to 0)(int_(0)^(x^(2))(tan^(-1)t)dt)/(int_(0)^(x^(2))sin sqrt(t)dt) is equal to :

lim_(x to 0)(int_(0)^(x^(2))(tan^(-1)t)dt)/(int_(0)^(x^(2))sin sqrt(t)dt) is equal to :