Home
Class 12
MATHS
If f(x)=a=b x+c x^2a n dalpha,beta,gamma...

If `f(x)=a=b x+c x^2a n dalpha,beta,gamma` are the roots of the equation `x^3=1,t h e n|a b c b c a c a b|` is equal to `f(alpha)+f(beta)+f(gamma)` `f(alpha)f(beta)+f(beta)f(gamma)+f(gamma)f(alpha)` `f(alpha)f(beta)f(gamma)` `-f(alpha)f(beta)f(gamma)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=a+b x+c x^2 and alpha,beta,gamma are the roots of the equation x^3=1,t h e n|a b c b c a c a b| is equal to a. f(alpha)+f(beta)+f(gamma) b f(alpha)f(beta)+f(beta)f(gamma)+f(gamma)f(alpha) c. f(alpha)f(beta)f(gamma) d. -f(alpha)f(beta)f(gamma)

If f(x) = a + bx + cx^(2) and alpha, beta, gamma are roots of the equation x^(3) = 1 , then |(a,b,c),(b,c,a),(c,a,b)| is equal to a) f(alpha) + f(beta) + f(gamma) b) f(alpha)f(beta) + f(beta)f(gamma) + f(gamma)f(alpha) c) f(alpha)f(beta)f(gamma) d) -f(alpha)f(beta)f(gamma)

If f(x)=a+b x+c x^2 and alpha,beta,gamma are the roots of the equation x^3=1,t h e n \ |[a,b,c],[b,c,a],[c,a,b]| is equal to

If f(x)=a+b x+c x^2 and alpha,beta,gamma are the roots of the equation x^3=1,t h e n \ |[a,b,c],[b,c,a],[c,a,b]| is equal to

If f(x)=a+b x+c x^2 and alpha,beta,gamma are the roots of the equation x^3=1,t h e n \ |[a,b,c],[b,c,a],[c,a,b]| is equal to

If f(x) =a+bx+cx^(2) and alpha,beta "and" gamma are the roots of the equation x^(3)=1 , then |{:(a,b,c),(b,c,a),(c,a,b):}| is equal to

If f(x) =a+bx+cx^(2) and alpha,beta "and" gamma are the roots of the equation x^(3)=1 , then |{:(a,b,c),(b,c,a),(c,a,b):}| is equal to

If alpha, beta, gamma are the zeros of the polynomial f(x) = ax^(3) + bx^(2) + cx + d then 1/(alpha) + 1/(beta) + 1/(gamma) = ………….

If alpha, beta, gamma are the zeros of the polynomial f(x) = ax^(3) + bx^(2) + cx + d then (alpha)^2 + (beta)^2 + (gamma)^2 = ………….

If alpha, beta, gamma are the roots of the equation x^(3) - 6x^(2) + 11x - 6 = 0 and if a = alpha^(2) + beta^(2) + gamma^(2) , b = alpha beta + beta gamma + gamma alpha and c = (alpha + beta) (beta + gamma)(gamma + alpha), then the correct inequality among the following is :