Home
Class 11
MATHS
sin^4theta+2sin^2thetacos^2theta=1-cos^4...

`sin^4theta+2sin^2thetacos^2theta=1-cos^4 theta`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: sin^4theta+2sin^2thetacos^2theta=1-Cos^4theta

Prove the following sin^4theta-cos^4theta=sin^2theta-cos^2theta=1-2cos^2theta=2sin^2theta-1

Prove the following identity: (1/(sec^2theta-cos^2theta)+1/(cos e c^2theta-sin^2theta))sin^2thetacos^2theta=(1-sin^2thetacos^2theta)/(2+sin^2thetacos^2theta)

Prove the following identity: (1/(sec^2theta-cos^2theta)+1/(cos e c^2theta-sin^2theta))sin^2thetacos^2theta=(1-sin^2thetacos^2theta)/(2+sin^2thetacos^2theta)

Prove that (1/(sec^2theta-cos^2theta)+1/(cosec^2-sin^2theta))sin^2thetacos^2theta=(1-sin^2thetacos^2theta)/(2+sin^2thetacos^2theta

Prove that sin^(4)theta+2sin^(2)thetacos^(2)theta+cos^(4)theta=1

sin^(4)theta+sin^(2)thetacos^(2)theta=?

If |(1+sin^2 theta,sin^2 theta,sin^2 theta),(cos^2 theta,1+cos^2 theta,cos^2 theta),(4sin 4 theta,4sin4theta,1+4sin4theta)|=0, then ... sin 4theta equal to ....

Prove the following identities: 2(sin^6theta+cos^6theta)-3(sin^4theta+cos^4theta)+1=0 sin^6theta+cos^6theta+3sin^2thetacos^2theta=1 (sin^8theta-cos^8theta)=(sin^2theta-cos^2theta)(1-2s in^2thetacos^2theta)

Prove that sin^(4)theta+sin^(2)thetacos^(2)theta=sin^(2)theta