Home
Class 12
MATHS
" If "cos y=x cos(a+y)" prove that "(dy)...

" If "cos y=x cos(a+y)" prove that "(dy)/(ax)=(cos^(2)(a+y))/(sin a)

Promotional Banner

Similar Questions

Explore conceptually related problems

If cosy=x cos(a+y)," prove that " (dy)/(dx) =(cos^(2)(a+y))/(sin a) , where a ne 0 is a constant .

If cos y=x cos (a+y) prove that (dy/dx)=(cos ^2(a+y))/sina

If cos y = x cos(a+y) then prove that dy/dx = (cos^2(a+y))/sin a

If cos y = x cos (a+y) Then prove that (dy)/(dx) = (cos^(2) (a+y))/(sin a ) , cosa ne +-1

If sin y = x cos (a + y) , prove that (dy)/(dx) = (cos^2 (a + y))/(cos a)

If y=x sin(a+y), prove that (dy)/(dx)=(sin^(2)(a+y))/(sin(a+y)-y cos(a+y))

If y,=x sin(a+y), prove that (dy)/(dx),=(s in^(2)(a+y))/(sin(a+y)-y cos(a+y))

If y,=x sin(a+y), prove that (dy)/(dx),=(s in^(2)(a+y))/(sin(a+y)-y cos(a+y))