Home
Class 12
MATHS
" (v) "tan^(-1)(7x)/(1-12x^(2))...

" (v) "tan^(-1)(7x)/(1-12x^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1) frac (7x)(1-12x^2)

AA n in N,x in R,tan^(-1)[(x)/(1.2+x^(2))]+tan^(-1)[(x)/(2.3+x^(2))]+......+tan^(-1)[(x)/(n(n+1)+x^(2))]=

Find the sum of each of the following series: (i) tan^(-1)((1)/(x^(2)+x+1))+tan^(-1)((1)/(x^(2)+3x+3))+tan^(-1)((1)/(x^(2)+5X+7))+tan^(-1)((1)/(x^(2))+7x+13))...... upto n.

(d)/(dx)[tan^(-1)((6x)/(1+7x^(2)))]+(d)/(dx)[tan^(-1)((5+2x)/(2-5x))]=

Prove that : tan^-1((6x-8x^3)/(1-12x^2))- tan^-1(4x/(1-4x^2)) = tan^-1 2x,|2x| < 1/sqrt3

Prove that tan^(-1)((6x-8x^(3))/(1-12x^(2)))-tan^(-1)((4x)/(1-4x^(2)))=tan^(-1)2x;|2x|<(1)/(sqrt(3))

Prove that tan^(-1)((6x-8x^(3))/(1-12x^(2)))-tan^(-1)((4x)/(1-4x^(2)))= tan^(-1)2x,|2x| lt (1)/(sqrt(3)) .

For all n in N, x in R, tan^(-1) [ ( x)/( 1.2+ x^2) ] + tan^(-1) [ (x)/( 2.3+ x^2) ] + …. + tan^(-1) [ ( x)/( n(n+1) +x^2) ] =

The number of integral values of x satisfying the equation tan^(-1)(3x)+tan^(-1)(5x)=tan^(-1)(7x)+tan^(-1)(2x) is