Home
Class 12
MATHS
f(x)=sqrt(sec^(-1)((2-|x|)/(4)))...

f(x)=sqrt(sec^(-1)((2-|x|)/(4)))

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=sqrt(Sec^(-1)((1-|x|)/(2))) is

The domain of definition of f(x) = sqrt(sec^(-1){(1-|x|)/(2)}) is

The domain of definition of f(x) = sqrt(sec^(-1){(1-|x|)/(2)}) is

Domain of the function f(x)=sqrt(2-sec^(-1)x) is

Domain of the function f(x)=sqrt(2-sec^(-1)x) is

The domain of f(x)=(Sec^(-1)(x)/(sqrt(x-[x]))) is

If f(x)=sqrt((sec x-1)/(sec+1))quad find f'(x)* Also find f,((pi)/(2))

The value if int(x^(2)-1)/((x^(2)+1)(sqrt(x^(4)+1)))dx equal to (1)/(sqrt(2))sec^(-1)(f(x))+c , then f(x) is

The value if int(x^(2)-1)/((x^(2)+1)(sqrt(x^(4)+1)))dx equal to (1)/(sqrt(2))sec^(-1)(f(x))+c , then f(x) is

If "f"("x")=sqrt((sec"x"-1)/(secx+1))" " find "f '"("x")dot Also find "f^,(pi/2)dot