Home
Class 10
MATHS
If sinA+sinB=a and cosA+cosB=b then prov...

If `sinA+sinB=a `and `cosA+cosB=b` then prove that `sin(A+B)=(2ab)/(a^2+b^2)` and `cos(A+B)=(b^2-a^2)/(a^2+b^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sinA=sinB and cosA=cosB , then prove that sin((A-B)/2)=0

If sinA=sinB and cosA=cosB , then prove that sin. (A-B)/(2)=0 .

In sinA=sinB and cos A=cos B , then prove that sin(A-B)/(2)=0

In sinA=sinB and cos A=cos B , then prove that sin((A-B)/2)=0

If sinA+sinB=a and cosA+cosB=b,then cos(A+B)

If sinA+sinB=a and cosA+cosB=b,then cos(A+B)

If sinA=sinBand cosA=cosB , then prove that " sin "(A-B)/(2)=0 .

If sinA+sinB=a and cosA+cosB=b, show that sin(A+B) = (2ab)/(b^2+a^2)

If sinA+sinB=a and cosA+cosB=b, show that tan(A+B) = (2ab)/(b^2-a^2)

If sinA + sinB = a and cosA+cosB=b , prove that: i) sin(A+B)=(2ab)/(a^(2)+b^(2)) ii) tan(A+B)= (2ab)/(b^(2)-a^(2))