Home
Class 12
MATHS
" The value of derivative of "tan^(-1)((...

" The value of derivative of "tan^(-1)((2x sqrt(1-x^(2)))/(1-2x^(2)))" w.r.t "sec^(-1)((1)/(2x^(2)-1))" at "x=1/2" equals- "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of derivative of tan^(-1)((2xsqrt(1-x^(2)))/(1-2x^(2)))w.r.tsec^(-1)((1)/(2x^(2)-1)) at x = 1/2 equals-

Derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x)) w.r.t. sin^(-1)((2x)/(1+x^(2))) is

tan^(-1)((x)/(sqrt(1-x^(2))))"w.r.t."sec^(-1)((1)/(2x^(2)-1))

find the derivative of tan^(-1)[(sqrt(1-x^(2)))/(x)] w.r.t. "tan"^(-1)(2x)/(1-x^(2)) .

Derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x))w.r.t.tan^(-1)x is