Home
Class 9
MATHS
((3)/(5))^(x)*((5)/(x))^(2x)=(125)/(77)...

((3)/(5))^(x)*((5)/(x))^(2x)=(125)/(77)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of x in each of the following: ((3)/(5))^(x)((5)/(3))^(2x)=(125)/(27) (ii) 5^(x-2)x3^(2x-3)=135

Find the value of x if ((6)/(5))^(x)*((5)/(6))^(2x)=(125)/(216)

Find the value of x in each of the following: (i)\ (3/5)^x\ (5/3)^(2x)=(125)/(27) \(ii)\ 5^(x-2)\ xx\ 3^(2x-3)=135

Solve for x. (root(3)((3)/(5)))^(2x + 1) = (125)/(27)

Solve for following equations for x:(i)5^(2x+3)=1(ii)(sqrt((3)/(5)))^(x+1)=(125)/(27)

Find the value of x in each of the following: 5^(2x+3)=1 (ii) (13)^(sqrt(x))=4^(4)-3^(4)-6(sqrt((3)/(5)))^(x+1)=(125)/(27)

if y=x^((1)/(2))(5-2x)^((2)/(3))(4-3x)^(-(3)/(4))(77x)^(-(4)/(5)) then the value of (((dy)/(dx))/(y)) is

if the sum of the series 2+(5)/(x)+(25)/(x^(2))+(125)/(x^(3))+......... Is finite then

Find x, if : (sqrt((3)/(5)))^(x+1)=(125)/(27)

(2x)/(5-3x)=(5+3x)/(8x)