Home
Class 12
MATHS
" Prove that "tan^(-1)(1)/(7)+tan^(-1)(1...

" Prove that "tan^(-1)(1)/(7)+tan^(-1)(1)/(13)=tan^(-1)(2)/(9)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: 2tan^(-1)(1)/(2)+tan^(-1)(1)/(7)=tan^(-1)(31)/(17)

Prove that: 2tan^(-1)(1)/(2)+tan^(-1)(1)/(7)=tan^(-1)(31)/(17)

Prove that: tan^(-1)(2)/(11)+tan^(-1)(7)/(24)=tan^(-1)(1)/(2)

Prove that : tan^(-1)(1)/(5)+tan^(-1)(1)/(7)+tan^(-1)(1)/(3)+tan^(-1)(1)/(8)=(pi)/(4)

Prove that: tan^(-1)(1/2)+tan^(-1)(1/5)=tan^(-1)(7/9)

tan^(-1)((4)/(7))+tan^(-1)((1)/(7)) = tan^(-1)((7)/(9))

Prove that 2tan^(-1)(1/2)-tan^(-1)(1/4)=tan^(-1)(13/16)

Prove that 2"tan"^(-1)(1)/(2) +"tan"^(-1)(1)/(7) ="tan"^(-1)(31)/(17) .

Prove that: 2tan^(-1)(1/2)+tan^(-1)(1/7)=tan^(-1)(31/17)

Prove that: 2tan^(-1)(1/2)+tan^(-1)(1/7)=tan^(-1)((31)/(17))