Home
Class 12
MATHS
" (ii) "quad |[a,b+c,a^(2)],[b,c+a,b^(2)...

" (ii) "quad |[a,b+c,a^(2)],[b,c+a,b^(2)],[c,a+b,c^(2)]|=-(a+b+c)(a-b)(b-c)(c-a)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that det[[a,b+c,a^(2)b,c+a,b^(2)c,a+b,c^(2)]]=-(a+b+c)xx(a-b)(b-c)(c-a)

Using properties of determinant show that : |(a,b+c,a^2),(b,c+a,b^2),(c,a+b,c^2)|=-(a+b+c)(a-b)(b-c)(c-a)

Prove that |(a,b+c,a^(2)),(b,c+a,b^(2)),(c,a+b,c^(2))|=-(a+b+c)xx(a-b)(b-c)(c-a).

Prove that |a ,b+c, a^2,b, c+a, b^2,c, a+b, c^2|=-(a+b+c)xx(a-b)(b-c)(c- a)

Prove that |a ,b+c, a^2,b, c+a, b^2,c, a+b, c^2|=-(a+b+c)xx(a-b)(b-c)(c- a)

Show that |(b+c,a,a^(2)),(c+a,b,b^(2)),(a+b,c,c^(2))|=(a+b+c)(a-b)(b-c)(c-a)

Prove the following : |{:(a^(2),a,b+c),(b^(2),b,c+a),(c^(2),c,a+b):}|=-(a+b+c)(a-b)(b-c)(c-a)

Prove that: {:|(a^2,a,b+c),(b^2,b,c+a),(c^2,c,ab)| = -(a+b+c)(a-b)(b-c)(c-a)

Prove that |a b+c a^2b c+a b^2c a+b c^2|=-(a+b+c)xx(a-b)(b-c)(c-a)dot