Home
Class 12
MATHS
Let f:R->R be defined by f(x)=int1^3dt/(...

Let `f:R->R` be defined by `f(x)=int_1^3dt/(1+|t-x|)`. If `int_1^3f(t)dt=(6log_e-k)-(k+1)` then `k=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f : R rarr R be defined as f(x) = int_(-1)^(e^(x)) (dt)/(1+t^(2)) + int_(1)^(e^(x))(dt)/(1+t^(2)) then

Let f : R rarr R be defined as f(x) = int_(-1)^(e^(x)) (dt)/(1+t^(2)) + int_(1)^(e^(x))(dt)/(1+t^(2)) then

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

f(x)=int_1^x lnt/(1+t) dt , f(e)+f(1/e)=

If f(x) = int_1^x (1)/(2 + t^4) dt ,then

Let f : (0,infty) rarr R be given by f(x) = int_(1/x)^(x) e^-(t + 1/t) dt/t then

Let f(x) be a function defined by f(x)=int_1^xt(t^2-3t+2)dt,1<=x<=3 Then the range of f(x) is

Let f(x) be a function defined by f(x)=int_(1)^(x)t(t^(2)-3t+2t)dt,1lexle3 then the maximum value of f(x) is

Let f(x) be a function defined by f(x)=int_(1)^(x)t(t^2-3t+2)dt,x in [1,3] Then the range of f(x), is

Let f(x) be a function defined by f(x)=int_(1)^(x)t(t^(2)-3t+2)dt,1<=x<=3 Then the range of f(x) is