Home
Class 14
MATHS
f(x)={[(sin ax^(2))/(x^(2)),x!=0],[(3)/(...

f(x)={[(sin ax^(2))/(x^(2)),x!=0],[(3)/(7)+(1)/(4x),x=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={[(sin ax^(2))/(x^(2));x!=0(3)/(4)+(1)/(4a);x=0,quad is continuous everywhere,then a=1(b)a=-1a=(-1)/(4) (d) a=(1)/(4)

Let f(x)={(sin ax^(2))/(x^(2));x!=0 and (3)/(4)+(1)/(4a);x=0 For what value of a,f(x) is continuous at x=0?

f(x)=(sin^(-1)x)^(2)*cos((1)/(x))ifx!=0;f(0)=0,f(x)

Value of a so that f(x) = (sin^(2)ax)/(x^(2)), x != 0 and f(0) = 1 is continuous at x = 0 is

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x^(@))/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x^(@))/(x^(2)) , for x!=0 , then f(0)=

{:(f(x),=((3^(sin x)-1)^(2))/(xlog(1+x)),",",x != 0),(,=k, ",",x = 0):} if f is continouous at x = 0, then k =

{:(f(x),=((3^(sin x)-1)^(2))/(xlog(1+x)),",",x != 0),(,=k, ",",x = 0):} if f is continouous at x = 0, then k =

f(x)=(cos3x-cos4x)/(x sin2x),x!=0,f(0)=(7)/(4) then f(x) at x=0is,x!=0,f(0)=(7)/(4)