Home
Class 11
MATHS
If x=sum(n=0)^ooa^n , y=sum(n=0)^oob^n ,...

If `x=sum_(n=0)^ooa^n , y=sum_(n=0)^oob^n , z=sum_(n=0)^ooc^n , w h e r e ra ,b ,a n dc` are in A.P. and `|a|<,|b|<1,a n d|c|<1,` then prove that `x ,ya n dz` are in H.P.

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=sum_(n=0)^oo a^n, y=sum_(n=0)^oo b^n, z=sum_(n=0)^oo c^n where a,b,c are in A.P and |a|<1, |b<1, |c|<1, then x,y,z are in

If x = sum_(n=0)^(oo) a^(n), y=sum_(n=0)^(oo) b^(n), z = sum_(n=0)^(oo) C^(n) where a,b,c are in A.P. and |a| lt 1, |b| lt 1, |c| lt 1 , then x,y,z are in

If x=sum_(n=0)^(oo) a^(n),y=sum_(n=0)^(oo)b^(n),z=sum_(n=0)^(oo)(ab)^(n) , where a,blt1 , then

If a,b,c are proper fractiion are in H.P. and x sum_(n=1)^oo a^n, y=sum_(n=1)^oo b^n, z= sum_(n=1)^oo c^n then x,y,z are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

If a=sum_(n=0)^(oo)x^(n),b=sum_(n=0)^(oo)y^(n),c=sum_(n=0)^(oo)(xy)^(n) where |x|,|y|<1 then

If a=sum_(n=0)^(oo)x^(n),b=sum_(n=0)^(oo)y^(n),c=sum_(n=0)^(oo)(xy)^(n) where |x|,|y|<1 then

Find sum_(n=1)^n u_n if u_n=sum_(n=0)^n1/2^n .

If x= sum_(n=0)^oo (Costheta)^(2n) , y= sum_(n=0)^oo (Sinphi)^(2n) , z= sum_(n=0)^oo (Cosphi)^(2n). (Sintheta)^(2n) Then which of the following is true ??