Home
Class 11
MATHS
If (1+i)z = (1-i)barz, "then show that ...

`If (1+i)z = (1-i)barz, "then show that "z = -ibarz.`

Text Solution

Verified by Experts

We have, `(1+i)z = (1-i)barz rArr barz = (barz)/(barz)=(1-i)/(1+i).`
`rArr (z)/(barz)=(1-i)/(1+i)(1-i)/(1-i) rArr (z)/(barz)=(1+i^(2)-2i)/(1-i^(2)) " " [:.i^(2)=-1] `
`rArr (z)/(barz)=(1-1-2i)/(2) rArr (z)/(barz)=i`
`rArr z = - i barz " "Hence proved. `
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR|Exercise LONG ANSWER TYPE QUESTIONS|14 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR|Exercise TRUE/FALSE|9 Videos
  • BINOMIAL THEOREM

    NCERT EXEMPLAR|Exercise True/False|7 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR|Exercise Objective type|13 Videos

Similar Questions

Explore conceptually related problems

If ((1+i) z= (1-i))bar(z), then

If (1+i)z=(1-i)bar(z) then z is

If (1+i)z=(1-i)phi z, then show that z=-iz

if (1+i)z=(1-i)bar(z) then z is

If (1+i)z=(1-i)barz , then z is equal to

If z=ibarz then

z_(1) "the"z_(2) "are two complex numbers such that" |z_(1)| = |z_(2)| . "and" arg (z_(1)) + arg (z_(2) = pi," then show that "z_(1) = - barz_(2).

If z = x + iy where i = sqrt(-1) , then what does the equation zbarz +|z|^2 +4(z+barz)-48=0 represent?

If the real part of (barz +2)/(barz-1) is 4, then show that the locus of the point representing z in the complex plane is a circle.

Solve for z: z^2 = (ibarz)^2 .