Home
Class 11
MATHS
Show that the complex number z , satisfy...

Show that the complex number `z ,` satisfying are `(z-1)/(z+1)=pi/4` lies on a circle.

Text Solution

Verified by Experts

Let z = x +`i`y
Given that, arg` ((z - 1)/(z + 1)) = pi//4`
`rArr arg(z -1) -arg (z + 1) = pi//4`
`rArr arg(x +iy - 1)- arg (x + iy + 1) = pi //4`
`rArr arg(x - 1 + iy)- arg ( x + 1 + iy) = pi/4`
`rArr tan^(-1) (y)/(x - 1) - tan^(-1) (y)/(x + 1) = pi//4`
`rArr tan^(-1)[((y)/(x -1)-(y)/(x +1))/ (1 +((y)/(x -1))((y)/(x+1)))]=pi//4`
`rArr [y[(x + 1- x +1)/(x^(2) - 1)]]/((x ^(2)-1 + Y^(2))/(x^(2)-1))= tan pi //4`
`rArr (2y)/(x^(2) + Y^(2) - 1) = 1`
`rArr x^(2) + y^(2) - 1 = 2 y`
`rArr x^(2) + Y^(2) - 1 = 0` which represents a circle .
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR|Exercise LONG ANSWER TYPE QUESTIONS|14 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR|Exercise TRUE/FALSE|9 Videos
  • BINOMIAL THEOREM

    NCERT EXEMPLAR|Exercise True/False|7 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR|Exercise Objective type|13 Videos

Similar Questions

Explore conceptually related problems

The complex number z satisfying the condition arg{(z-1)/(z+1)}=(pi)/(4) lies on

The complex number z satisfying |z+1|=|z-1| and arg (z-1)/(z+1)=pi/4 , is

Show that the locus of complex variable z satisfying |(z-2)/(z+2)|=2 is a circle find the equation of the circle?

The complex number z satisfying the equation |z-i|=|z+1|=1

The complex number z satisfying z+|z|=1+7i then |z|^(2)=

The number of complex numbers satisfying (1 + i)z = i|z|

The locus of a complex number z satisfying |z-(1+3i)|+|z+3-6i|=4