Home
Class 11
MATHS
If |z + 1| = 1(z(1) ne - 1 ) and z(2) ...

If `|z + 1| = 1(z_(1) ne - 1 )` and `z_(2) =(z_(1)-1)/ (z_(1)-2)` , then show that the real part of `z_(2)` is zero.

Text Solution

Verified by Experts

Let `z_(1) = x + iy`
`rArr |z_(1)| = sqrt(x^(2) + y ^(2)) = 1" "[:. |z_(1)|= 1, given ] ….(i)`
Now, `z_(2) = (z_(1)-1)/(z_(1)-2) = (x + iy -1)/(x + iy + 1)`
` = (x - 1 +iy)/(x + 1 + ly) =((x - 1 + iy)(x + 1 - iy))/((x +1 + iy)(x + 1 - iy))`
` = (x^(2)- 1 + ly (x + 1) - iy(x - 1) - i^(2)y^(2))/((x +1^(2))-i^(2)y^(2))`
` = (x^(2)- 1 + iyx + iy-ixy +iy + y^(2)) /((x +1^(2))+y^(2))`
` = (x^(2)+ y^(2)- 1 2iy)/((x +1^(2))+y^(2))=(1-1=2iy)/((x+1)^(2)+y^(2))" " [:x^(2) + y^(2) =1]`
Hence, the real part of `z_(2)` is zero.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR|Exercise TRUE/FALSE|9 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|16 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|16 Videos
  • BINOMIAL THEOREM

    NCERT EXEMPLAR|Exercise True/False|7 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR|Exercise Objective type|13 Videos

Similar Questions

Explore conceptually related problems

If z_(1) is a complex number other than -1 such that |z_(1)|=1 and z_(2)=(z_(1)-1)/(z_(1)+1), then show that the real parts of z_(2) is zero.

If |z_(1)| = |z_(2)| = 1, z_(1)z_(2) ne -1 and z = (z_(1) + z_(2))/(1+z_(1)z_(2)) then

If | z_ (1) + z_ (2) | = | z_ (1) -z_ (2) |, then arg z_ (1) -arg z_ (2) =

If z,z=z_(2) and |z_(1)+z_(2)|=|(1)/(z_(1))+(1)/(z_(2))| then

z_(1) "the"z_(2) "are two complex numbers such that" |z_(1)| = |z_(2)| . "and" arg (z_(1)) + arg (z_(2) = pi," then show that "z_(1) = - barz_(2).

If |z_(1)+z_(2)|=|z_(1)-z_(2)| then the difference of the arguments of z_(1) and z_(2) is

If for complex numbers z_(1) and z_(2)arg(z_(1))-arg(z_(2))=0, then show that |z_(1)-z_(2)|=|z_(1)|-|z_(2)||