Home
Class 11
MATHS
If |z1|=|z2|=dot=|zn|=1, prove that |z1+...

If `|z_1|=|z_2|=dot=|z_n|=1,` prove that `|z_1+z_2+z_3++z_n|=1/(z_1)+1/(z_2)+1/(z_3)++1/(z_n)dot`

Text Solution

Verified by Experts

Given that , `|z_(1)|=|z_(2)|=* * *=|z_(n)|=1`
`rArr |z_(1)|^(2)=|z_(2)|^(2)=* * *=|z_(n)|^(2)=1`
`rArr z_(1)barz_(1) =z_(2)barz_(2)=z_(3)barz_(3)=* * *=z_(n)barz_(n)=1`
`rArr z_(1)=(1)/(z_(1)),z_(2)=(1)/(z_(2))=* * *=z_(n)=(1)/(barz_(n))`
Now, `|z_(1)+z_(2)+z_(3)+z_(4)+* * * + z_(n)|`
`(z_(1)barz_(1))/(barz_(1)) +( z_(2)barz_(2))/(barz_(1))+( z_(3)barz_(3))/(barz_(1))+* * *+(z_(n)barz_(n))/barz_(n)|" " [:.z_(1)+z_(2)=1, "where" z_(1)=(1)/(z), z_(1)=(barz)/(barz-barz),z_(1)=barz]`
`|(|z_(1)|^(2))/(barz_(1))+ (|z_(2)|^(2))/(barz_(2))+(|z_(3)|^(2))/(barz_(3))+ * * *+(|z_(n)|^(2))/(barz_(n))|`
`|(1)/(barz_(1))+ 1/(barz_(2))+1/(barz_(3))+ * * *+1/(barz_(n))| = sqrt((1)/(barz_(1))+(1)/(barz_(2))+(1)/(barz_(3)))`
`|(1)/(z_(1))+(1)/(z_(2))+* * *+(1)/(z_(3))|` " "Hence proved.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR|Exercise TRUE/FALSE|9 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|16 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|16 Videos
  • BINOMIAL THEOREM

    NCERT EXEMPLAR|Exercise True/False|7 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR|Exercise Objective type|13 Videos

Similar Questions

Explore conceptually related problems

If |z_(1)|=|z_(2)|=......=|z_(n)|=1, prove that |z_(1)+z_(2)+z_(3)++z_(n)|=(1)/(z_(1))+(1)/(z_(2))+(1)/(z_(3))++(1)/(z_(n))

If |z_1|=1,|z_2|=1 then prove that |z_1+z_2|^2+|z_1-z_2|^2 =4.

If |z_1+z_2| = |z_1-z_2| , prove that amp z_1 - amp z_2 = pi/2 .

If |z_1|=|z_2|=.=|z_n|=1, then the value of |z_1+z_2+z_3+..+z_n| is equal to (A) 1 (B) |z_1|+|z_2|+z_3|+…..+|z_n| (C) |1/z_1+1/z_2+1/z_3+……….+1/z_n| (D) n

Prove that |z_1+z_2|^2+|z_1-z_2|^2 =2|z_1|^2+2|z_2|^2 .

If |z_(1)|=1,|z_(2)|=2,|z_(3)|=3 ,then |z_(1)+z_(2)+z_(3)|^(2)+|-z_(1)+z_(2)+z_(3)|^(2)+|z_(1)-z_(2)+z_(3)|^(2)+|z_(1)+z_(2)-z_(3)|^(2) is equal to

For any three complex numbers z_1, z_2 and z_3 , prove that z_1 lm (bar(z_2) z_3)+ z_2 lm (bar(z_3) z_1) + z_3lm(bar(z_1) z_2)=0 .

Prove that |1-barz_1z_2|^2-|z_1-z_2|^2=(1-|z_1|^2)(1-|z_2|^2) .