Home
Class 11
MATHS
If the complex number Z(1) and Z(2), arg...

If the complex number `Z_(1)` and `Z_(2), arg (Z_(1))- arg(Z_(2)) =0`. then show that `|z_(1)-z_(2)| = |z_(1)|-|z_(2)|`.

Text Solution

Verified by Experts

Let `z_(1) = r_(1) (costheta_(1) + isin theta_(1))`
and `z_(2) = r_(2) (costheta_(2) + isin theta_(2))`
`rArr arg (z_(1)) = theta_(1)arg(z_(2)) = theta_(2)`
Given that, arg `(z_(1)) - arg (z_(2)) = 0`
`theta _(1)-theta _(2) -0 rArr theta _(1) = theta _(2)`
` z_(2) = r_(2) (costheta_(2) + isintheta_(2)) [:.theta_(1) = theta_(2)]`
` z_(1)-z_(2) = (r_(1) costheta_(1)-r_(2) costheta_(1)) + (r_(1) isintheta_(1)- r_(2)isintheta_(1)) `
` |z_(1)-z_(2)| = sqrt((r_(1) costheta_(1)-r_(2) costheta_(1))^(2) + (r_(1) isintheta_(1)- r_(2)isintheta_(1))^(2)) `
`=sqrt(r_(1)^(2) +r_(1)^(2)-2 r_(1)r_(2)cos^(2)theta_(1) -2 r_(1)r_(2)sin^(2)theta_(1))`
`=sqrt(r_(1)^(2) +r_(1)^(2)-2 r_(1)r_(2)(sin^(2)theta_(1) + cos^(2)theta_(1)))`
`=sqrt(r_(1)^(2) +r_(1)^(2)-2 r_(1)r_(2))=sqrt((r_(1)-r_(2))^(2))`
`rArr |z_(1) - z_(2)| =r_(1)-r_(2) [:. r = |z|]`
`|z_(1) - z_(2)|` " "Hence proved
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR|Exercise TRUE/FALSE|9 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|16 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|16 Videos
  • BINOMIAL THEOREM

    NCERT EXEMPLAR|Exercise True/False|7 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR|Exercise Objective type|13 Videos

Similar Questions

Explore conceptually related problems

If for complex numbers z_(1) and z_(2)arg(z_(1))-arg(z_(2))=0, then show that |z_(1)-z_(2)|=|z_(1)|-|z_(2)||

If for complex numbers z_(1) and z_(2),arg(z_(1))-arg(z_(2))=0 then |z_(1)-z_(2)| is equal to

If for complex numbers z_(1) and z_(2) , arg z_(1)-"arg"(z_(2))=0 then |z_(1)-z_(2)| is equal to

If z_(1)andz_(2) are two complex numbers such that |z_(1)|=|z_(2)| and arg(z_(1))+arg(z_(2))=pi, then show that z_(1),=-(z)_(2)

z_(1) "the"z_(2) "are two complex numbers such that" |z_(1)| = |z_(2)| . "and" arg (z_(1)) + arg (z_(2) = pi," then show that "z_(1) = - barz_(2).

If |z_(1)|=|z_(2)| and arg (z_(1))+"arg"(z_(2))=0 , then

arg(z_(1)z_(2))=arg(z_(1))+arg(z_(2))

If arg (bar (z) _ (1)) = arg (z_ (2)) then