Home
Class 11
MATHS
Find a complex number z satisfying the e...

Find a complex number `z` satisfying the equation `z+sqrt(2)|z+1|+i=0.`

Text Solution

Verified by Experts

Givne equation is ` z + sqrt(2)|(z +1)| +i =0.`
` Let" "z = x + iy" "…(i)`
`rArr x +iy +sqrt(2)|x + iy + 1| +I = 0`
`rArr x + i (1 + y) +sqrt(2)[sqrt (x + 1)^(2) + Y^(2)] = 0 `
`rArr x + i (1 + y) +sqrt(2)sqrt ((x^(2) + 2x + 1+ y^(2))) = 0`
`rArr x + sqrt(2)sqrt (x^(2) + 2x + 1+ y^(2)) = 0 `
`rArr x^(2) = 2(x^(2) + 2x + 1 + y^(2)`
`rArr x^(2) + 4x + 2y6(2) + 2 = 0 " " ...(ii) 1 + y = 0 `
`rArr y = - 1`
For `y = - 1," " x^(2) + 4x + 2 + 2 = 0` [ using Eq. (ii)]
`rArr x^(2) + 4x + 4 = 0 rArr (x + 2)^(2) = 0`
`rArr x + 2 = 0 rArr x = -2`
`:. z = x + iy = - 2 - i`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR|Exercise TRUE/FALSE|9 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|16 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|16 Videos
  • BINOMIAL THEOREM

    NCERT EXEMPLAR|Exercise True/False|7 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR|Exercise Objective type|13 Videos

Similar Questions

Explore conceptually related problems

IF agt=1 , find all complex numbers z satisfying the equation z+a|z+1|+i=0

The complex number z satisfying the equation |z-i|=|z+1|=1

Find the complex number z satisfying the equations |(z-12)/(z-8i)|=(5)/(3),|(z-4)/(z-8)|=1

The number of unimodular complex numbers z satisfying the equation z^(2)+bar(z)=0 is

Number of imaginary complex numbers satisfying the equation, z^2=bar(z)2^(1-|z|) is (A) 0 (B) 1 (C) 2 (D) 3

Find the greatest and the least values of the modulus of complex number z satisfying the equation |z-(4)/(z)|=2

Non-real complex number z satisfying the equation z^(3)+2z^(2)+3z+2=0 are