Home
Class 11
MATHS
Convert the complex number z=(i-1)/(cosp...

Convert the complex number `z=(i-1)/(cospi/3+isinpi/3)`in the polar form.

Text Solution

Verified by Experts

Given that, `z =(1-i)/("cos"(pi)/(3)+i " sin" (pi)/(3))=(-sqrt(2)[(-1)/(sqrt(2))+i(1)/sqrt(2)])/("cos"(pi)/(3)+i " sin" (pi)/(3)) `
`= (-sqrt(2)[cos(pi = pi//4) + i sin (pi - pi //4))]/(cos pi//3 + i sin pi//3)`
` = (-sqrt(2) [cos3pi//4 + i sin pi//4]) /(cos pi//3 + i sin pi//3)`
`=sqrt(2)[cos((3pi)/(4) - (pi)/(3)) + i sin ((3pi)/(4) - (pi)/(3))]`
`=sqrt(2)["cos"(5pi)/(12) + "i sin" (5pi)/(12)]`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR|Exercise TRUE/FALSE|9 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|16 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|16 Videos
  • BINOMIAL THEOREM

    NCERT EXEMPLAR|Exercise True/False|7 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR|Exercise Objective type|13 Videos

Similar Questions

Explore conceptually related problems

Write the complex number z = (i-1)/(cos pi/3 + i sin pi/3) in polar form.

Convert the complex number z=(i-1)/(cos(pi)/(3)+i sin(pi)/(3)) in the polar form.

Convert z=(i-1)/("cos"(pi)/(3)+"isin"(pi)/(3)) in polar form.

Convert the complex number 3(cos(5(pi)/(3))-i sin((pi)/(6))) into polar form.

Convert the complex number (-16)/(1+i sqrt(3)) into polar form.

Covert the complex number z = 1 + cos (8pi)/(5) + i. sin (8pi)/(5) in polar form. Find its modulus and argument.

Represent the complex number z=1+i sqrt(3) in the polar form.

Convert the complex number (1)/((1+i)) into polar form.

Convert the complex number (1+i)/(1-i) in the polar form