Home
Class 11
MATHS
If ((1 +i)/(1 -i))^(x) =1, then (A) x=2n...

If `((1 +i)/(1 -i))^(x) =1`, then (A) x=2n+1 (B) x=4n (C) x=2n (D) x=4n+1, n` in`N.

A

`x = 2n + 1`

B

`x = 4n`

C

`x = 2n`

D

`x = 4n + 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\left(\frac{1+i}{1-i}\right)^{x} = 1\), we will follow these steps: ### Step 1: Simplify the expression \(\frac{1+i}{1-i}\) To simplify \(\frac{1+i}{1-i}\), we can multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{1+i}{1-i} \cdot \frac{1+i}{1+i} = \frac{(1+i)(1+i)}{(1-i)(1+i)} \] ### Step 2: Calculate the numerator and denominator Calculating the numerator: \[ (1+i)(1+i) = 1 + 2i + i^2 = 1 + 2i - 1 = 2i \] Calculating the denominator: \[ (1-i)(1+i) = 1 - i^2 = 1 - (-1) = 2 \] Thus, we have: \[ \frac{1+i}{1-i} = \frac{2i}{2} = i \] ### Step 3: Substitute back into the equation Now we substitute back into the original equation: \[ (i)^{x} = 1 \] ### Step 4: Determine when \(i^{x} = 1\) The powers of \(i\) cycle every 4: - \(i^0 = 1\) - \(i^1 = i\) - \(i^2 = -1\) - \(i^3 = -i\) - \(i^4 = 1\) (and repeats) Thus, \(i^{x} = 1\) when \(x\) is a multiple of 4: \[ x = 4n \quad \text{for } n \in \mathbb{N} \] ### Conclusion The solution to the equation is: \[ x = 4n \quad (n \in \mathbb{N}) \] Thus, the correct answer is (B) \(x = 4n\). ---

To solve the equation \(\left(\frac{1+i}{1-i}\right)^{x} = 1\), we will follow these steps: ### Step 1: Simplify the expression \(\frac{1+i}{1-i}\) To simplify \(\frac{1+i}{1-i}\), we can multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{1+i}{1-i} \cdot \frac{1+i}{1+i} = \frac{(1+i)(1+i)}{(1-i)(1+i)} ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR|Exercise TRUE/FALSE|9 Videos
  • BINOMIAL THEOREM

    NCERT EXEMPLAR|Exercise True/False|7 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR|Exercise Objective type|13 Videos