Home
Class 11
MATHS
Which of the following is correct for an...

Which of the following is correct for any tow complex numbers `z_1a n dz_2?` `|z_1z_2|=|z_1||z_2|` (b) `a r g(z_1z_2)=a r g(z_1)a r g(z_2)` (c) `|z_1+z_2|=|z_1|+|z_2|` (d) `|z_1+z_2|geq|z_1|+|z_2|`

A

`|z_(1) z_(2)| = | z_(1) ||z_(2)|`

B

arg` (z _(1) z_(2)) = arg (z_(1). Arg (z_(2))`

C

`|z_(1) + z_(2)| = |z_(1)|+|z_(2)|`

D

`|z_(1) + z_(2) ge |z_(1)|- | z_(2)|`

Text Solution

Verified by Experts

The correct Answer is:
A

Let `z_(1) = r_(1) (costheta_(1) + isintheta_(1))`
`rArr |z_(1)| = r-(1) …(i) `
and `z_(2) = r_(2)(costheta_(2) + isin theta_(2)) `
`rArr |z_(2)| =r_(2) ...(ii)`
Now. ` z_(1) z_(2) = r_(1) r_(2) [costheta_(1) costheta_(2) + isin theta_(1) costheta_(2)+ icostheta_(1)isintheta_(2)+i^(2) sintheta_(1)sintheta_(2)]`
`=r_(1)r_(2) [cos(theta_(1) + theta_(2))+ isin(theta_(1) + theta_(2))]`
`rArr |z_(1)z_(2)| = r_(1)r_(2)`
`:. |z_(1)z_(2)| = |z_(1)||z_(1)| [using Eqa. (i) and (ii)]`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR|Exercise TRUE/FALSE|9 Videos
  • BINOMIAL THEOREM

    NCERT EXEMPLAR|Exercise True/False|7 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR|Exercise Objective type|13 Videos

Similar Questions

Explore conceptually related problems

Which of the following are correct for any two complex numbers z_1 and z_2? (A) |z_1z_2|=|z_1||z_2| (B) arg(|z_1 z_2|)=(argz_1)(arg,z_2) (C) |z_1+z_2|=|z_1|+|z_2| (D) |z_1-z_2|ge|z_1|-|z_2|

Which of the following is correct for any tow complex numbers z_(1) and z_(2)?(a)|z_(1)z_(2)|=|z_(1)||z_(2)|(b)arg(z_(1)z_(2))=arg(z_(1))arg(z_(2))(c)|z_(1)+z_(2)|=|z_(1)|+|z_(2)|(d)|z_(1)+z_(2)|>=|z_(1)|+|z_(2)|

For any two complex numbers z_(1) and z_(2), prove that |z_(1)+z_(2)| =|z_(1)|-|z_(2)| and |z_(1)-z_(2)|>=|z_(1)|-|z_(2)|

Show that for any two non zero complex numbers z_1,z_2 (|z_1|+|z_2|)|z_1\|z_1|+z_2\|z_2||le2|z_1+z_2|

Prove that for nonzero complex numbers |z_1+z_2| |frac(z_1)(|z_1|)+frac(z_2)(|z_2|)|le2(|z_1|+|z_2|) .

For any two complex numbers z_(1) and z_(2) prove that: |z_(1)+z_(2)|^(2)=|z_(1)|^(2)+|backslash z_(2)|^(2)+2Rebar(z)_(1)z_(2)