Home
Class 11
MATHS
The real value of theta for which the ex...

The real value of `theta` for which the expression `(1 + icos theta)/(1 - 2i cos theta)` is real number is

A

`npi+(pi)/(4)`

B

`npi+(-1)^(2)(pi)/(4)`

C

`2npipm(pi)/(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the real value of \( \theta \) for which the expression \[ \frac{1 + i \cos \theta}{1 - 2i \cos \theta} \] is a real number, we can follow these steps: ### Step 1: Identify the expression We start with the expression: \[ z = \frac{1 + i \cos \theta}{1 - 2i \cos \theta} \] ### Step 2: Rationalize the denominator To simplify this expression and check when it is real, we can multiply the numerator and the denominator by the conjugate of the denominator: \[ z = \frac{(1 + i \cos \theta)(1 + 2i \cos \theta)}{(1 - 2i \cos \theta)(1 + 2i \cos \theta)} \] ### Step 3: Simplify the denominator The denominator simplifies as follows: \[ (1 - 2i \cos \theta)(1 + 2i \cos \theta) = 1^2 - (2i \cos \theta)^2 = 1 - 4(-1)(\cos^2 \theta) = 1 + 4 \cos^2 \theta \] ### Step 4: Simplify the numerator Now simplifying the numerator: \[ (1 + i \cos \theta)(1 + 2i \cos \theta) = 1 + 2i \cos \theta + i \cos \theta + 2i^2 \cos^2 \theta = 1 + 3i \cos \theta - 2 \cos^2 \theta \] ### Step 5: Combine the results Now we can combine the results: \[ z = \frac{1 - 2 \cos^2 \theta + 3i \cos \theta}{1 + 4 \cos^2 \theta} \] ### Step 6: Separate real and imaginary parts The real part of \( z \) is: \[ \text{Re}(z) = \frac{1 - 2 \cos^2 \theta}{1 + 4 \cos^2 \theta} \] The imaginary part of \( z \) is: \[ \text{Im}(z) = \frac{3 \cos \theta}{1 + 4 \cos^2 \theta} \] ### Step 7: Set the imaginary part to zero For \( z \) to be a real number, the imaginary part must equal zero: \[ \frac{3 \cos \theta}{1 + 4 \cos^2 \theta} = 0 \] ### Step 8: Solve for \( \cos \theta \) This implies: \[ 3 \cos \theta = 0 \implies \cos \theta = 0 \] ### Step 9: Find the values of \( \theta \) The values of \( \theta \) for which \( \cos \theta = 0 \) are: \[ \theta = \frac{\pi}{2} + n\pi \quad (n \in \mathbb{Z}) \] This can be expressed as: \[ \theta = 2n\pi + \frac{\pi}{2} \quad \text{or} \quad \theta = 2n\pi - \frac{\pi}{2} \] ### Final Answer Thus, the real values of \( \theta \) for which the expression is a real number are: \[ \theta = 2n\pi + \frac{\pi}{2} \quad \text{for } n \in \mathbb{Z} \]

To find the real value of \( \theta \) for which the expression \[ \frac{1 + i \cos \theta}{1 - 2i \cos \theta} \] is a real number, we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR|Exercise TRUE/FALSE|9 Videos
  • BINOMIAL THEOREM

    NCERT EXEMPLAR|Exercise True/False|7 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR|Exercise Objective type|13 Videos

Similar Questions

Explore conceptually related problems

The real value of theta for which the expression (1+i cos theta)/(1-2i cos theta) is real number is

Find the real values of theta for which the complex number (1+i cos theta)/(1-2i cos theta) is purely real.

The real part of z = (1)/(1-cos theta + i sin theta) is

If the real part of the complex number z = ( 3 + 2 i cos theta)/( 1 - 3 i cos theta) , theta in (0, (pi)/(2)) is zero, then the value of sin^(2) 3 theta + cos ^(2) theta is equal to _____