Home
Class 11
MATHS
If f(z)=(7-z)/(1-z^2), where z=1+2i , th...

If `f(z)=(7-z)/(1-z^2)`, where `z=1+2i ,` then `|f(z)|` is

A

`(|z|)/(2)`

B

`|z|`

C

`2|z|`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A

Let z = 1 + 2i
`rArr |z|= sqrt( 1+ 4 ) = sqrt(5)`
Now. `f(z) = (7-z)/(1-z^(2))=(7-1-2i)/(1-(1+2i)^(2))`
`(6-2i)/(1-1-4i^(2)-4i)=(6-2i)/(4-4i)`
`((3-i)(2+2i))/((2-2i)(2+2i))`
`(6-2i+6i-2i^(2))/(4-4i^(2))=(6+4i+2)/(4+4)`
`(8+4i)/(8)=1+(1)/(2)i`
`f(z) = 1 + (1)/(2)i`
` :. |f(z)|=sqrt( 1+(1)/(4))=sqrt((4+1)/4)=sqrt(5)/(2) = (|z|)/(2)`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR|Exercise TRUE/FALSE|9 Videos
  • BINOMIAL THEOREM

    NCERT EXEMPLAR|Exercise True/False|7 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR|Exercise Objective type|13 Videos

Similar Questions

Explore conceptually related problems

Let Z_(1),Z_(2) be two complex numbers which satisfy |z-i| = 2 and |(z-lambda i)/(z+lambda i)|=1 where lambda in R, then |z_(1)-z_(2)| is

If |z-2-i|=|z|sin((pi)/(4)-arg z)|, where i=sqrt(-1) ,then locus of z, is

if z_(1) = 3i and z_(2) =1 + 2i , then find z_(1)z_(2) -z_(1)

If int(x^2-2)/((x^4+5x^2+4)tan^-1((x^2+2)/x))dx=log|f(z)|+c , then (A) f(z)=tan^-1z , where z=sqrt(x+2) (B) f(z)=tan^-1z , where z=x+2/x (C) f(z)=sin^-1z , where z=(x+2)/x (D) none of these

Let f(z)=[(5,3,8),(2,z,1),(1,2,z)] then f(5) is equal to

If Real ((2z-1)/(z+1)) =1, then locus of z is , where z=x+iy and i=sqrt(-1)