Home
Class 12
MATHS
" iv."lim(x rarr2)((x-2))/(log(a)(x-1))...

" iv."lim_(x rarr2)((x-2))/(log_(a)(x-1))

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: lim_(x rarr2)(x-2)/(log_(a)(x-1))

Evaluate lim_(x rarr2)(x-2)/(log_(a)(x-1))

lim_(x rarr2)(x-2)/(x+1)=

Evaluate: lim_(x rarr2)(sin(e^(x-2)-1))/(log(x-1))

The limit lim_(x rarr2)(log_(e)(x-2))/(log_(6)(e^(x)-e^(2))) equals

lim_(x rarr2)(log(2x-3))/(2(x-2))

lim_(x rarr0)(log(a+x)-log(a-x))/(x)

lim_(x rarr0)((a^(x)-1)/(x))=log_(e)a

lim_(x rarr0)(log(1+x))/(x)=1

lim_(x rarr0)(log_(e)(1+x))/(x)