Home
Class 11
MATHS
f(x)=(3x^2+a x+a+1)/(x^2+x-2) and lim(x-...

`f(x)=(3x^2+a x+a+1)/(x^2+x-2)` and `lim_(x->-2)f(x)` exists. Then the value of `(a-4)` is__________

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)={(ax+2, x 1):} , If lim_(x rarr1)f(x) exist then value of a is :

If f(x)=lim_(n->oo)((x^2+a x+1)+x^(2n)(2x^2+x+b))/(1+x^(2n))and lim_(x->+-1)f(x) exist, then The value of b is (a)-1 (b). 1 ( c.) 0 (d).2

Let f(x)={{:(4x-5",",xle2),(x-a",",xgt2.):} If lim_(xrarr2)f(x) exists then find the value of a.

If (lim)_(x->2)(f(x-9))/(x-2)=3 then (lim)_(x->2)f(x), is

Let f(x)={{:(x+2,,x le -1), (xc^(2),, x gt -1):} , find 'c', if lim_(x to -1)f(x) exists.

Let lim_(x rarr1)(x^(a)-ax+a-1)/((x-1)^(2))=f(a). Then the value of f(4) is

Let f(x)={{:(x^(2)+1,, x 2) :} and lim_(xrarr2)f(x) exist, then the value of k is Select one: a. (1)/(2) b. 5 c. 4 d. 3

If lim_( xto 2 ) (f(x) -f(2))/( x-2) exist ,then