Home
Class 10
MATHS
tan^(2)phi-sin^(2)phi-tan^(2)phi*sin^(2)...

tan^(2)phi-sin^(2)phi-tan^(2)phi*sin^(2)phi=0

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation tan^(2)phi+tan^(6)phi=tan^(3)phi*sec^(2)phi is

If : cos^(2)theta-sin^(2)theta=tan^(2)phi, "then" : cos^(2)phi-sin^(2)phi=

(tan^(2)phi)/(1+tan^(2)phi)+(cosec ^(2)phi)/(sec^(2)phi+cosec^(2)phi)=1

prove that: tan^(2) phi+cot^(2) phi+2=sec^(2)phi cosec^(2) phi

cos2thetacos2phi+sin^(2)(theta-phi)-sin^(2)(theta+phi) is equal to

Prove that sin^2(theta-phi)-sin^2(theta+phi)= -sin2theta sin2phi hence prove that cos2thetacos2phi-sin^2(theta+phi)+sin^2(theta-phi)=cos(2theta+2phi)

cos2 theta cos2 phi+sin^(2)(theta-phi)-sin^(2)(theta+phi)=cos(2 theta+2 phi)

if tan^(alpha)=cos^(2)phi-sin^(2)phi then prove that cos^(alpha)-sin^(2)alpha=tan^(2)phi