Home
Class 14
MATHS
[I(b),x+b+z=0," then,show that "],[qquad...

[I_(b),x+b+z=0," then,show that "],[qquad [1," is "],[x^(3)," is "z^(3)]|=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

if iz^3+z^2-z+i=0 then show that absz=1

if x+y+z=0 , then show that, |{:(1,1,1),(x,y,z),(x^3,y^3,z^3):}|=0

If x+y+z=0 then show that abs((1,1,1),(x,y,z),(x^3,y^3,z^3)) = 0.

If iz^(3)+z^(2)-z+i=0 then show that |z|=1.

If iz^3+z^2-z+i = 0 , then show that |z|=1.

If x/a = y/b = z/c , then show that x^(3)/a^(3) + y^(3)/b^(3) + z^(3)/c^(3) = 3 ((x+y+z)/(a+b+c))^(3) .

(a) If x + y + z=0, show that x ^(3) + y ^(3) + z ^(3)= 3 xyz. (b) Show that (a-b) ^(3) + (b-c) ^(3) + (c-a)^(3) =3 (a-b) (b-c) (c-a)

(a) If x + y + z=0, show that x ^(3) + y ^(3) + z ^(3)= 3 xyz. (b) Show that (a-b) ^(3) + (b-c) ^(3) + (c-a)^(3) =3 (a-b) (b-c) (c-a)

(a) If x + y + z=0, show that x ^(3) + y ^(3) + z ^(3)= 3 xyz. (b) Show that (a-b)^(3) + (b-c) ^(3) + (c-a)^(3) =3 (a-b) (b-c) (c-a)