Home
Class 11
MATHS
Find the sum (1^4)/(1xx3)+(2^4)/(3xx5)+(...

Find the sum `(1^4)/(1xx3)+(2^4)/(3xx5)+(3^4)/(5xx7)+......+(n^4)/((2n-1)(2n+1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum of the series: (1)/((1xx3))+(1)/((3xx5))+(1)/((5xx7))+...+(1)/((2n-1)(2n+1))

(1^(4))/(1.3)+(2^(4))/(3.5)+(3^(4))/(5.7)+......+(n^(4)) /((2n-1)(2n+1))=(n(4n^(2)+6n+5))/(48)+(n)/(16(2n+1))

Find the value of 3(4)/(7)xx2(2)/(5)xx1(3)/(4)

Find the sum (3)/(1xx2)xx(1)/(2)+(4)/(2xx3)xx((1)/(2))^(2)+(5)/(3xx4)xx((1)/(2))^(2)+... to n terms.

Find the value of (3^(n)xx3^(2n+1))/(9^(n)xx3^(n-1)) .

1 (4)/(5) xx 2 (2)/(3) xx 3 (1)/(3) xx (1)/(4) =

Find the sum to n terms of the series 1/(1xx2)+1/(2xx3)+1/(3xx4)+...+1/n(n+1)

Find the sum to n terms of the series: (1)/(1xx2)+(1)/(2xx3)+(1)/(3xx4)+

Find the sum, (i) 4-(1)/(n)+4-(2)/(n)+4-(3)/(n) …………upto n terms (ii) 1+(-2)+(-5)+….+(-236) .