Home
Class 9
MATHS
(4)/(216))^(-2/3)+(1)/((256)^(-3))+(2)/(...

(4)/(216))^(-2/3)+(1)/((256)^(-3))+(2)/((243)^(-1/5))-6

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : (4)/((216)^(-2//3))+(1)/((256)^(-3//4))+(2)/((343)^(-1//3))

The value of (1)/((216)^(-2/3))+(1)/((256)^(-3/4))+(1)/((32)^(-1/5)) is a.102 b.105c.107d.109

Simplify: 4/((216)^(-2/3))+1/((256)^(-3/4))+2/((243)^(-1/5))

Simplify: 4/((216)^(-2/3))+1/((256)^(-3/4))+2/((243)^(-1/5))

Simplify: (4)/((216)^(-(2)/(3)))+(1)/((256)^(-(3)/(4)))+(2)/((243)^(-(1)/(5)))

Find the value of 4/(216)^(2/3)+1/(256)^(3/4)+2/(243)^(-2/5)

(1) (4)/((216)^((2)/(3)))+(1)/((256)^((3)/(4)))+(2)/((243)^((1)/(5))) (ii) ((64)/(125))^((2)/(3))+((256)/(625))^((1)/(4))+((3)/(7))^(0) (iii) ((81)/(16))^((3)/(4))(((25)/(9))^((3)/(2))-:((5)/(2))^(-3)) (iv) ((25)^((5)/(2))times(729)^((1)/(3)))/((125)^((2)/(3))times(27)^((2)/(3))times8^((4)/(3)))

1/(216)^(-2/3) + 1/(256)^(-3/4) + 1/(243)^(-1/5) is equal to:

((1)/(216))^(-2/3)-:((1)/(27))^(-4/3)=? a.(3)/(4)b*(2)/(3) c.(4)/(9)d.(1)/(8)

Prove that . (i) [8^(-(2)/(3)) xx 2^((1)/(2))xx 25^(-(5)/(4))] div[32^(-(2)/(5)) xx 125 ^(-(5)/(6)) ] = sqrt(2) (ii) ((64)/(125))^(-(2)/(3)) = (1)/(((256)/(625))^((1)/(4)))+ (sqrt(25))/(root3(64)) = (65)/(16) (iii) [7{(81)^((1)/(4)) +(256)^((1)/(4))}^((1)/(4))]^(4) = 16807 .