Home
Class 12
MATHS
tan^(-1)(m)/(n)-tan^(-1)(m-n)/(m+n)=(pi)...

tan^(-1)(m)/(n)-tan^(-1)(m-n)/(m+n)=(pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of tan^(-1)((m)/(n))-tan^(-1)((m-n)/(m+n))?

What is the value of tan^(-1)((m)/(n))-tan^(-1)((m-n)/(m+n)) ?

tan^(-1)((3)/(n))+tan^(-1)((4)/(n))=(pi)/(2)

For n in N ,if tan^(-1)((1)/(3))+tan^(-1)((1)/(4))+tan^(-1)((1)/(5))+tan^(-1)((1)/(n))=(pi)/(4) ,then (n-2)/(15) is equal to

tan^(-1)""(m)/(n)-tan^(-1)""(m-n)/(m+n) is equal to a) tan^(-1)""(n)/(m) b) tan^(-1)""(m+n)/(m-n) c) (pi)/(4) d) tan^(-1)((1)/(2))

Statement 1: If agt0,bgt0, tan^(-1)(a/x)+tan^(-1)(b/x)=(pi)/2 . implies x=sqrt(ab) Statement 2: If m,n epsilonN,ngem, then "tan"^(-1)(m/n)+tan^(-1)(n-m)/(n+m)=(pi)/4 .

Statement 1: If agt0,bgt0, tan^(-1)(a/x)+tan^(-1)(b/x)=(pi)/2 . implies x=sqrt(ab) Statement 2: If m,n epsilonN,ngem, then "tan"^(-1)(m/n)+tan^(-1)(n-m)/(n+m)=(pi)/4 .

The value of ["tan"^(-1)(m)/(n)-tan^(-1)((m-n)/(m+n))] is -

Prove that: tan^(-1)(m/n)+tan^(-1)((n-m)/(n+m))=pi/4