Home
Class 12
MATHS
int((x^(2)+2))/(x+1)dx...

`int((x^(2)+2))/(x+1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{x^2 + 2}{x + 1} \, dx\), we can follow these steps: ### Step 1: Simplify the integrand We start by simplifying the expression \(\frac{x^2 + 2}{x + 1}\). We can perform polynomial long division or rewrite the numerator: \[ \frac{x^2 + 2}{x + 1} = \frac{x^2 + 1 + 1}{x + 1} = \frac{x^2 + 1}{x + 1} + \frac{1}{x + 1} \] Now, we can further simplify \(\frac{x^2 + 1}{x + 1}\): \[ \frac{x^2 + 1}{x + 1} = x - 1 + \frac{2}{x + 1} \] Thus, we can rewrite the integral as: \[ \int \left( x - 1 + \frac{3}{x + 1} \right) \, dx \] ### Step 2: Split the integral Now we can split the integral into three separate integrals: \[ \int \left( x - 1 + \frac{3}{x + 1} \right) \, dx = \int x \, dx - \int 1 \, dx + 3 \int \frac{1}{x + 1} \, dx \] ### Step 3: Integrate each term Now we integrate each term separately: 1. \(\int x \, dx = \frac{x^2}{2}\) 2. \(\int 1 \, dx = x\) 3. \(3 \int \frac{1}{x + 1} \, dx = 3 \ln |x + 1|\) ### Step 4: Combine the results Combining all the results from the integrations, we get: \[ \int \frac{x^2 + 2}{x + 1} \, dx = \frac{x^2}{2} - x + 3 \ln |x + 1| + C \] where \(C\) is the constant of integration. ### Final Answer: \[ \int \frac{x^2 + 2}{x + 1} \, dx = \frac{x^2}{2} - x + 3 \ln |x + 1| + C \] ---

To solve the integral \(\int \frac{x^2 + 2}{x + 1} \, dx\), we can follow these steps: ### Step 1: Simplify the integrand We start by simplifying the expression \(\frac{x^2 + 2}{x + 1}\). We can perform polynomial long division or rewrite the numerator: \[ \frac{x^2 + 2}{x + 1} = \frac{x^2 + 1 + 1}{x + 1} = \frac{x^2 + 1}{x + 1} + \frac{1}{x + 1} \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise Inverse Trigonometric Functions|55 Videos

Similar Questions

Explore conceptually related problems

int(2x^(2))/((x-1))dx

int(x^(2)+2)/(x^(2)+1)dx

(i) int(x^(2))/(2x+1)dx

int (x)/(x^(2)+2x+1)dx

int(x^(2)-2)/(x^(2)+1)dx=

int(x^(2) +3)/(x^(2)+1)dx

int(x^(2))/(x^(2)+1)dx Find integration

int(1)/(x^(2)+2x+1)dx

int(x^(2)-1)/(x^(2)+1)dx

int(x^(2)+1)/(x^(2)-1)dx