Home
Class 12
MATHS
int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3...

`int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx`

Text Solution

Verified by Experts

The correct Answer is:
N/a

Let ` I = int((e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx)))dx`
`=int((e^(logx^(6))-e^(logx^(5)))/(e^(logx^(4))-e^(logx^(3))))dx , [:'alogb = logb^(a)]`
`=int((x^(6)-x^(5))/(x^(4)-x^(3)))dx , [:'e^(logx)=x]`
`= int((x^(3)-x^(2))/(x-1))dx=int(x^(2)(x-1))/(x-1)dx`
`= intx^(2)dx = (x^(3))/(3)+C`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise Inverse Trigonometric Functions|55 Videos

Similar Questions

Explore conceptually related problems

int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx

int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx

int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx=

Evaluate : int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx .

The value of the integral int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx is equal to (A) x^2+c (B) x^3/3+c (C) x^2/2+c (D) none of these

If y=(e^(4logx)-e^(3logx))/(e^(2logx)-e^(logx))," then: "(dy)/(dx)=

e^(x+2logx)

int(1+logx)/(x(2+log x)(3+logx))dx

int(logx)/(x(1+logx)(2+logx))dx=

int7^(x logx)(1+logx)dx=