Home
Class 12
MATHS
int tan^(2)xsec^(4)x dx...

`int tan^(2)xsec^(4)x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \tan^2 x \sec^4 x \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We know that \( \sec^2 x = 1 + \tan^2 x \). Therefore, we can express \( \sec^4 x \) as: \[ \sec^4 x = \sec^2 x \cdot \sec^2 x = (1 + \tan^2 x) \sec^2 x \] Thus, we can rewrite the integral as: \[ \int \tan^2 x \sec^4 x \, dx = \int \tan^2 x (1 + \tan^2 x) \sec^2 x \, dx \] ### Step 2: Substitute \( u = \tan x \) Let \( u = \tan x \). Then, the derivative \( du = \sec^2 x \, dx \). This means \( dx = \frac{du}{\sec^2 x} \). ### Step 3: Change the variable in the integral Substituting \( u \) into the integral, we have: \[ \int u^2 (1 + u^2) \sec^2 x \, dx = \int u^2 (1 + u^2) \, du \] Now, we can expand the integrand: \[ \int u^2 + u^4 \, du \] ### Step 4: Integrate term by term Now we integrate each term separately: \[ \int u^2 \, du + \int u^4 \, du = \frac{u^3}{3} + \frac{u^5}{5} + C \] ### Step 5: Substitute back \( u = \tan x \) Now we substitute back \( u = \tan x \): \[ \frac{\tan^3 x}{3} + \frac{\tan^5 x}{5} + C \] ### Final Answer Thus, the final answer is: \[ \int \tan^2 x \sec^4 x \, dx = \frac{\tan^3 x}{3} + \frac{\tan^5 x}{5} + C \] ---

To solve the integral \( \int \tan^2 x \sec^4 x \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We know that \( \sec^2 x = 1 + \tan^2 x \). Therefore, we can express \( \sec^4 x \) as: \[ \sec^4 x = \sec^2 x \cdot \sec^2 x = (1 + \tan^2 x) \sec^2 x \] Thus, we can rewrite the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise Inverse Trigonometric Functions|55 Videos

Similar Questions

Explore conceptually related problems

What is int tan^(2) x sec^(4) x dx equal to ?

int tan^(2)xsec^2xdx

int tan^(4)xsec^2xdx

int tan x sec^(4)dx

int tan^3xsec^2xdx

If int(tan^(2)x+tan^(4)x)dx=((1)/(n))tan^(n)x+c, then n=

int tan xsec^2dx=

int x tan x^(2)dx

The value of inttan^(3)2xsec2x dx is equal to:

int tan^(2)((x)/(2))dx