Home
Class 12
MATHS
int(sinx+cosx)/(sqrt(1+sin2x))dx...

`int(sinx+cosx)/(sqrt(1+sin2x))dx`

A

`x^2/5 + C`

B

`x + C`

C

`2x + C`

D

`x ^2+ C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} \, dx \), we can follow these steps: ### Step 1: Simplify the Denominator We know that \( \sin 2x = 2 \sin x \cos x \). Therefore, we can rewrite the denominator: \[ 1 + \sin 2x = 1 + 2 \sin x \cos x \] ### Step 2: Use Trigonometric Identity We can also use the identity \( \sin^2 x + \cos^2 x = 1 \). Thus, we can rewrite the expression under the square root: \[ 1 + \sin 2x = 1 + 2 \sin x \cos x = (\sin x + \cos x)^2 \] ### Step 3: Substitute the Denominator Now, substituting this back into the integral gives us: \[ \int \frac{\sin x + \cos x}{\sqrt{(\sin x + \cos x)^2}} \, dx \] Since \( \sqrt{(\sin x + \cos x)^2} = |\sin x + \cos x| \), we can simplify the integral: \[ \int \frac{\sin x + \cos x}{|\sin x + \cos x|} \, dx \] ### Step 4: Determine the Sign The expression \( \sin x + \cos x \) can be positive or negative depending on the value of \( x \). Therefore, we consider two cases: 1. **Case 1**: When \( \sin x + \cos x \geq 0 \) \[ \int 1 \, dx = x + C \] 2. **Case 2**: When \( \sin x + \cos x < 0 \) \[ \int -1 \, dx = -x + C \] ### Step 5: Combine Results Thus, the integral can be expressed as: \[ \int \frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} \, dx = \begin{cases} x + C & \text{if } \sin x + \cos x \geq 0 \\ -x + C & \text{if } \sin x + \cos x < 0 \end{cases} \]

To solve the integral \( \int \frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} \, dx \), we can follow these steps: ### Step 1: Simplify the Denominator We know that \( \sin 2x = 2 \sin x \cos x \). Therefore, we can rewrite the denominator: \[ 1 + \sin 2x = 1 + 2 \sin x \cos x \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise Inverse Trigonometric Functions|55 Videos

Similar Questions

Explore conceptually related problems

int((sinx+cosx))/(sqrt(sin2x))dx

Evaluate: int(sinx-cosx)/(sqrt(sin2x))\ dx

Knowledge Check

  • The value of integral I=int(sinx+cosx)/sqrt(1+sin 2x) dx is

    A
    `sqrt(1+cos2x)`
    B
    `sqrtx`
    C
    x
    D
    `sqrt(1+2x)`
  • The value of integral I=int(sinx+cosx)/sqrt(1+sin 2x) dx is

    A
    `sqrt(1+cos2x)`
    B
    `sqrtx`
    C
    x
    D
    `sqrt(1+2x)`
  • int(sinx-cosx)/(sqrt(1-sin2x))e^(sinx)cosx dx is equal to

    A
    `e^(sinx)+C`
    B
    `e^(sinx-cosx)+C`
    C
    `e^(sinx+cosx)+C`
    D
    `e^(cosx-sinx)+C`
  • Similar Questions

    Explore conceptually related problems

    The value of int(sinx-cosx)/(sqrt(sin2x)dx is equal to

    Evaluate int((sinx+cosx)dx)/(sqrt(3+sin2x)).

    int(cosx)/(sqrt(9sin^(2)x-1))dx

    int_(0)^((pi)/2)(sinx+cosx)/(sqrt(1+sin2x))dx=

    int(sinx-cosx)/(sqrt(sin2x-(1)/(2)))dx=