Home
Class 12
MATHS
intsqrt(1+sinx)dx...

`intsqrt(1+sinx)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \sqrt{1 + \sin x} \, dx\), we can use trigonometric identities and substitution. Here’s a step-by-step solution: ### Step 1: Rewrite the integrand We start by using the identity for \(1 + \sin x\): \[ 1 + \sin x = \left(\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}\right) + 2 \sin \frac{x}{2} \cos \frac{x}{2} = \left(\sin \frac{x}{2} + \cos \frac{x}{2}\right)^2 \] Thus, we can rewrite the integral: \[ \sqrt{1 + \sin x} = \sqrt{\left(\sin \frac{x}{2} + \cos \frac{x}{2}\right)^2} = \sin \frac{x}{2} + \cos \frac{x}{2} \] ### Step 2: Set up the integral Now, we can rewrite the integral: \[ \int \sqrt{1 + \sin x} \, dx = \int \left(\sin \frac{x}{2} + \cos \frac{x}{2}\right) \, dx \] ### Step 3: Use substitution Let \(t = \frac{x}{2}\), then \(dx = 2 \, dt\). Substituting this into the integral gives: \[ \int \left(\sin t + \cos t\right) \cdot 2 \, dt = 2 \int \left(\sin t + \cos t\right) \, dt \] ### Step 4: Integrate Now we can integrate: \[ 2 \int \left(\sin t + \cos t\right) \, dt = 2 \left(-\cos t + \sin t\right) + C \] ### Step 5: Substitute back Now we substitute back \(t = \frac{x}{2}\): \[ 2 \left(-\cos \frac{x}{2} + \sin \frac{x}{2}\right) + C = 2\sin \frac{x}{2} - 2\cos \frac{x}{2} + C \] ### Final Result Thus, the final result for the integral is: \[ \int \sqrt{1 + \sin x} \, dx = 2\sin \frac{x}{2} - 2\cos \frac{x}{2} + C \]

To solve the integral \(\int \sqrt{1 + \sin x} \, dx\), we can use trigonometric identities and substitution. Here’s a step-by-step solution: ### Step 1: Rewrite the integrand We start by using the identity for \(1 + \sin x\): \[ 1 + \sin x = \left(\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}\right) + 2 \sin \frac{x}{2} \cos \frac{x}{2} = \left(\sin \frac{x}{2} + \cos \frac{x}{2}\right)^2 \] Thus, we can rewrite the integral: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise Inverse Trigonometric Functions|55 Videos

Similar Questions

Explore conceptually related problems

Evaluate : intsqrt(1-sin2x)dx .

intsqrt(1+sin2x)dx=

intsqrt(1+sin2x)dx is equal to

intsqrt(1-sin7x)dx=

intsqrt(1+sin 2x) dx

intsqrt(secx+1)dx

intsqrt((1-sinx)/(1+sinx)dx

intsqrt((1+sinx)/(1-sinx))dx=

If intsqrt(2)sqrt(1+sinx)dx=-4cos(ax+b)+c , then the value of (a,b) is