Home
Class 12
MATHS
int(x)/(sqrt(x)+1)dx...

`int(x)/(sqrt(x)+1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{x}{\sqrt{x} + 1} \, dx\), we can follow these steps: ### Step 1: Substitution Let \(x = t^2\). Then, \(dx = 2t \, dt\) and \(\sqrt{x} = t\). ### Step 2: Rewrite the Integral Substituting \(x\) and \(dx\) into the integral, we get: \[ \int \frac{t^2}{t + 1} \cdot 2t \, dt = 2 \int \frac{t^3}{t + 1} \, dt \] ### Step 3: Simplify the Integrand Now, we can simplify \(\frac{t^3}{t + 1}\) using polynomial long division: \[ \frac{t^3}{t + 1} = t^2 - t + 1 - \frac{1}{t + 1} \] Thus, we can rewrite the integral as: \[ 2 \int \left(t^2 - t + 1 - \frac{1}{t + 1}\right) \, dt \] ### Step 4: Integrate Each Term Now we can integrate each term separately: \[ 2 \left( \int t^2 \, dt - \int t \, dt + \int 1 \, dt - \int \frac{1}{t + 1} \, dt \right) \] Calculating each integral: - \(\int t^2 \, dt = \frac{t^3}{3}\) - \(\int t \, dt = \frac{t^2}{2}\) - \(\int 1 \, dt = t\) - \(\int \frac{1}{t + 1} \, dt = \ln |t + 1|\) Putting it all together: \[ 2 \left( \frac{t^3}{3} - \frac{t^2}{2} + t - \ln |t + 1| \right) + C \] ### Step 5: Substitute Back Now, substitute back \(t = \sqrt{x}\): \[ = \frac{2(\sqrt{x})^3}{3} - 2 \cdot \frac{(\sqrt{x})^2}{2} + 2\sqrt{x} - 2\ln |\sqrt{x} + 1| + C \] This simplifies to: \[ = \frac{2x^{3/2}}{3} - x + 2\sqrt{x} - 2\ln (\sqrt{x} + 1) + C \] ### Final Answer Thus, the integral \(\int \frac{x}{\sqrt{x} + 1} \, dx\) evaluates to: \[ \frac{2x^{3/2}}{3} - x + 2\sqrt{x} - 2\ln (\sqrt{x} + 1) + C \] ---

To solve the integral \(\int \frac{x}{\sqrt{x} + 1} \, dx\), we can follow these steps: ### Step 1: Substitution Let \(x = t^2\). Then, \(dx = 2t \, dt\) and \(\sqrt{x} = t\). ### Step 2: Rewrite the Integral Substituting \(x\) and \(dx\) into the integral, we get: \[ ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise Inverse Trigonometric Functions|55 Videos

Similar Questions

Explore conceptually related problems

int(x)/(sqrt(1+x))dx

int(x)/(sqrt(1-5x))dx

int(x)/(sqrt(1-2x))dx

int(x)/(sqrt(1-2x))dx

(a) Evaluate: int(x)/(1+sqrt(x))dx

(i) int(x)/(1+sqrt(x))dx

(i) int(x)/(1+sqrt(x))dx

Evaluate; int(x)/(1+sqrt(x))dx

"I=int(x)/(sqrt((1-x)))dx

int(x-1)sqrt(x+1)dx