Home
Class 12
MATHS
int(sqrt(1+x^2))/(x^4) dx...

`int(sqrt(1+x^2))/(x^4) dx`

Text Solution

Verified by Experts

The correct Answer is:
N/a

Let `I = int(sqrt(1+x^(2)))/(x^(4))dx = int(sqrt(1+x^(2)))/(x).1/(x^(3))dx`
` = intsqrt((1+x^(2))/(x^(2))).(1)/(x^(3))dx = intsqrt((1)/(x^(2))+1).(1)/(x^(3))dx`
Put `1+(1)/(x^(2))=t^(2) rArr (-2)/(x^(3))dx = 2t dt`
`rArr -(1)/(x^(3)) =t dt`
`:. I = -int^(2)dt = - (t^(3))/(3) + C = - (1)/(3)(1+(1)/(x^(2)))^(3//2) + C`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise Inverse Trigonometric Functions|55 Videos

Similar Questions

Explore conceptually related problems

I=int(sqrt(x^2+1))/(x^(4))dx

int(sqrt(x^2+1))/(x^(4))dx" is equal to "

If int(sqrt(1-x^2))/x^4dx=A(x) (sqrt(1-x^2))^m+C ,for a suitable chosen integer m and a function A(x), where C is a constant of integration, then (A(x))^m equals

int(sqrt(x^(2)+1))/(x^(4))dx=

int(sqrt(x^(2)+1))/(x^(4))dx is equal to

Evaluate: int(sqrt((1+x^(2))/(x^(2)-x^(4))))dx

int sqrt(1-4x^(2))dx

int(x)/(sqrt(1-4x^(2)))dx

(i) int ((1+x)^(3))/(sqrt(x))dx " "(ii) int((1+x)^(3))/(x^(4)) dx

Evaluate : (i) int(dx)/(1+sqrt(x)) (ii) int(x+sqrt(x+1))/(x+2)dx