Home
Class 12
MATHS
int dt/sqrt[3t-2t^2]...

`int dt/sqrt[3t-2t^2]`

Text Solution

Verified by Experts

The correct Answer is:
N/a

Let `I = int(dt)/(sqrt(3t-2t^(2)))=1/(sqrt(2))int(dt)/(sqrt(-(t^(2)-3/2t)))`
`=1/2int (dt)/(sqrt(-[(t^(2)-2.(1)/2.(3)/(2)t)+(3/4)^(2)-(3/4)^(2)]))`
`=1/(sqrt(2))int(dt)/(sqrt(-[(t-3/4)^(2)-(3/4)^(2)]))`
`= 1/(sqrt(2))int(dt)/(sqrt((3/4)^(2)-(t-(3)/(4))^(2)))`
`= 1/(sqrt(2))sin^(-1)((t-(3)/(4))/(3/4)) + C = 1/(sqrt(2))sin^(-1)((4t-3)/(3))+C`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise Inverse Trigonometric Functions|55 Videos

Similar Questions

Explore conceptually related problems

In the equation int(dt)/(sqrt(2at-t^(2)))=a^(x) sin^(-1)[t/a-1] . The value of x is

" (a) "int(dt)/(sqrt(1-t^(2)))

int (dt)/(sqrt(2at - t^(2))) = a^(2) sin ^(-1)[[1)/(a) - 1] The value of x is

(1)/(2)int(dt)/(t sqrt(t-1))

int(dt)/(t+sqrt(a^(2)-t^(2)))

Evaluate int(t^(2))/(sqrt(1-t^(2)))dt

I=int_(0)^(-1)(t ln t)/(sqrt(1-t^(2)))dt=

int(dt)/((1+sqrt(t))^(8))=(-1)/(3(1+sqrt(t))^(p_(1)))+(2)/((7(1+sqrt(t))^(p_(2))))+c

int t/(t+b^2) dt

int(1)/(tsqrt(t^(2) -1))dt